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Abstract

In this paper we consider the problem of restoration of a image contaminated by a mixture of

Gaussian and impulse noises. We propose a new statistic called ROADGI which improves

the well-known Rank-Ordered Absolute Differences (ROAD) statistic for detecting points

contaminated with the impulse noise in this context. Combining ROADGI statistic with the

method of weights optimization we obtain a new algorithm called Optimal Weights Mixed Fil-

ter (OWMF) to deal with the mixed noise. Our simulation results show that the proposed filter

is effective for mixed noises, as well as for single impulse noise and for single Gaussian

noise.

1 Introduction

Noise can be systematically introduced into digitized images during acquisition and transmis-

sion, which usually degrade the quality of digitized images. However, various image-related

applications, such as aerospace, medical image analysis, object detection etc., generally require

effective noise suppression to produce reliable results. The nature of the problem depends on

the type of noise to the image. Generally, two noise models can adequately represent most

noise added to images. Often in practice it is assumed that the noise has two components: an

additive Gaussian noise and an impulse noise.

The additive Gaussian noise model is defined by

YðxÞ ¼ f ðxÞ þ �ðxÞ; x 2 I; ð1Þ

where I ¼ f1

N ;
2

N ; � � � ;
N� 1

N ; 1g
2
; N 2 N, Y is the observed image brightness, f: I 7! [c, d] is an

unknown target regression function, and �(x), x 2 I, are independent and identically distrib-

uted (i.i.d.) Gaussian random variables with mean 0 and standard deviation σ> 0. The Model

(1) adds to each digitized image pixel a value from a zero-mean Gaussian distribution. Such

noise is usually introduced during image acquisition. The zero-mean property of this Gaussian

distribution makes it possible to remove the Gaussian noise by Non-Local weighted averaging.

Important denoising methods for the Gaussian noise model have been well developed in

recent years, see for example [1–15]
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The random impulse noise model is defined by

YðxÞ ¼
nðxÞ; if x 2 B;

f ðxÞ; if x 2 InB;

(

ð2Þ

where B is the set of pixels contaminated by impulse noise, PðBÞ ¼ p is the impulse probability

(the proportion of the occurrence of the impulse noise), n(x) are independent random vari-

ables uniformly distributed on some interval [c, d]. The impulse noise is characterized by

replacing a pixel value with a random one. Such a noise can be introduced due to transmission

errors, malfunctioning pixel elements in the camera sensors, faulty memory locations, and

timing errors in analog-to-digital conversion. Recently, some important methods have been

proposed to remove the impulse noise, see for example: [16–23].

However, the above mentioned methods are not effective when we apply them to remove a

mixture of the Gaussian and impulse noises defined by

YðxÞ ¼
nðxÞ; if x 2 B;

f ðxÞ þ �ðxÞ; if x 2 InB:

(

ð3Þ

The Gaussian noise removal methods cannot adequately remove impulse noise, for they inter-

pret the impulse noise pixel as edges to be preserved; when impulse removal methods are

applied to an image corrupted with the Gaussian noise, such filters, in practice, leave grainy,

visually disappointing results. Garnett et al. [24] introduced a new local image statistic called

Rank Ordered Absolute Difference (ROAD) to identify the impulse noisy pixels and incorpo-

rated it into a filter designed to remove the additive Gaussian noise. As a result they have

obtained a trilateral filter capable to remove mixed Gaussian and impulse noise. This method

also performs well for removing the single impulse noise. A variant of the ROAD statistic

called ROLD was introduced in Dong et al. [22] which amplifies the differences between noisy

and noise-free pixels, so that the noise detection becomes more accurate. An impulse detector

and a filter which efficiently removes impulse/Gaussian mixed noise has been proposed in

Xiong and Yin [25]. Lien et al [26] employed a decision-tree-based impulse noise detector and

an edge-preserving filter to reconstruct the intensity values of noisy pixels, whose hardware

cost was low. For other developpements in this direction we refer to [27–30]. Recently Delon

and Desolneux [31, 32] and Hu et al. [33] introduced patch-based approaches to deal with the

impulse noise and the mixture of Gaussian and impulse noises.

In this paper, we propose a new patch-based filter that we call Optimal Weights Mixed Fil-

ter (OWMF), by improving the ROAD statistic of [24] and combining it with the Optimal

Weights Filter in [11]. We introduce a new statistic called ROADGI (Rank-Ordered Absolute

Differences for mixture of Gaussian and Impulse noises) which detects more effectively the

impulse noise when it is mixed with Gaussian noise. The ROADGI statistic will give a weight

for all pixels in the image, which take value in the interval (0, 1]. The weight will get low value

(near to 0) when a pixel is contaminated by impulse noise; otherwise, it will carry a high value

(near to 1). The ROADGI statistic is then combined with the Optimal Weights Filter (OWF)

to deal with the mixed noise, by assigning nearly 0 weights for impulse noise points. The simu-

lation results show that the proposed filter can effectively remove the mixture of impulse noise

and the Gaussian noise. Moreover, when applied to either the single impulse noise or the single

Gaussian noise it performs as good as the best filters specialized to single noises.

Let us point out the differences with the patch-based approaches in Delon and Desolneux

[31, 32] and Hu et al. [33] which are all adapted for the mixed noise. The method in [31, 32]

consists in finding the n most similar patches according to a suitably chosen distance between
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patches, with which one then constructs a maximum likelihood estimator. The filter in [33] is

an extension of the Non-Local Means filter to the case of mixed noise, with weights depending

on the ROAD statistic. In the present paper we use the optimal weights approach from [11, 34]

and an improved version of ROAD statistic to appropriately measure the impact of the impulse

noise pixels.

The rest of the paper is organized as follows. In Section 2 after a short recall of the Optimal

Weights Filter and a brief presentation of the Trilateral Filter whose main ideas will be used in

the definition of our new filter, we introduce our filter. In section 3, we provide visual exam-

ples and numerical results that demonstrate our method’s soundness. Section 4 is a brief

conclusion.

2 Algorithms

2.1 Optimal Weights Filter

For any pixel x0 2 I and a given h> 0, the square window of pixels

Ux0 ;h
¼ fx 2 I : kx � x0k1 � hg ð4Þ

will be called search window at x0, where h is a positive integer. The size of the square search

window Ux0,h is the positive integer number M = (2h + 1)2 = card Ux0,h. For any pixel

x 2 Ux0,h and a given integer η> 0 a second square window of pixels Vx,η = Ux,η will be called

for short a patch window at x in order to be distinguished from the search window Ux0,h. The

size of the patch window Vx,η is the positive integer m = (2η + 1)2 = card Vx0,η. The vector

Yx,η = (Y (y))y2Vx,η
formed by the values of the observed noisy image Y at pixels in the patch

Vx,η will be called simply data patch at x 2 Ux0,h. For any x0 2 I and any x 2 Ux0,h, a distance

between the data patches Yx,η = (Y (y))y2Vx,η
and Yx0,η = (Y (y))y2Vx0,η

is defined by

d2
ðYx;Z;Yx0 ;Z

Þ ¼
1

m
kYx;Z � Yx0 ;Z

k
2

2
; ð5Þ

where

kYx;Z � Yx0 ;Z
k

2

2
¼
X

y2Vx0 ;Z

ðYðTxyÞ � Y ðyÞÞ2

and Tx is the translation mapping: Tx y = x + (y − x0). If we use the approximation

ðf ðTxyÞ � f ðyÞÞ2 � ðf ðxÞ � f ðx0ÞÞ
2
¼ r2

f ;x0
ðxÞ

and the law of large numbers, it seems reasonable that

r2
f ;x0
ðxÞ � d2

ðYx;Z � Yx0 ;Z
Þ � 2s2: ð6Þ

For our filter, however, ne need an estimate for ρf,x0
(x) without the square. As shown in [11],

in practice, good denoising results are obtained by using the following approximation

rf ;x0
ðxÞ � r̂x0

ðxÞ ¼ ðdðYx;Z � Yx0 ;Z
Þ �

ffiffiffi
2
p

sÞ
þ

ð7Þ

rather than extracting the root in Eq (6). The fact that r̂x0
ðxÞ is a reasonable estimator of ρf,x0

was justified by the convergence results in [11] (cf. Theorems 3 and 4 of [11]). The Optimal
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Weights Filter is defined by

OWFðf Þðx0Þ ¼

X

x2Ux0 ;h

ktrð
r̂x0
ðxÞ
â
ÞY ðxÞ

X

y2Ux0 ;h

ktrð
r̂x0
ðxÞ
â
Þ

; ð8Þ

where κtr is the usual triangular kernel:

ktrðtÞ ¼ ð1 � jtjÞ
þ
; t 2 R1: ð9Þ

The bandwidth â > 0 is the solution of
X

x2Ux0 ;h

r̂x0
ðxÞðâ � r̂x0

ðxÞÞþ ¼ s2;

and can be calculated as follows. We sort the set fr̂x0
ðxÞ : x 2 Ux0 ;h

g in the ascending order

0 ¼ r̂x0
ðx1Þ � r̂x0

ðx2Þ � � � � � r̂x0
ðxMÞ < r̂x0

ðxMþ1Þ ¼ þ1, where M = card Ux0,h. Let

ak ¼

s2 þ
Xk

i¼1

r̂x0
ðxiÞ

2

Xk

i¼1

r̂x0
ðxiÞ

; 1 � k � M; ð10Þ

and

k� ¼ maxf1 � k � M : ak � r̂x0
ðxkÞg

¼ minf1 � k � M : ak < r̂x0
ðxkÞg � 1;

ð11Þ

with the convention that ak =1 if r̂x0
ðxkÞ ¼ 0 and that min⌀ ¼ M þ 1. The solution can be

expressed as â ¼ ak� ; moreover, k� is the unique integer k 2 {1, � � �, M} such that ak � r̂x0
ðxkÞ

and akþ1 < r̂x0
ðxkþ1Þ if k<M.

The proof of Remark 2.1 can be found in [11].

2.2 ROAD statistic and trilateral filter

In [24], Garnett et al introduced the Rank-Ordered Absolute Differences (ROAD) statistic to

detect points contaminated by impulse noise. For any pixel x0 2 I and a given d> 0, we define

the square window of pixels

O
0

x0 ;d
¼ fx : 0 < Nkx � x0k1 � dg;

where d is a positive integer. The square window will be called deleted neighborhood at x0.

The ROAD statistic is defined by

ROADðx0Þ ¼
XK

i¼1

riðx0Þ; x0 2 I; ð12Þ

where ri(x0) is the i-th smallest term in the set fjYðxÞ � Yðx0Þj : x 2 O
0

x0 ;d
g and

2 � K < card O
0

x0 ;d
. In [24] it is advised to use d = 1 and K = 4. Note that if x0 is an impulse

noisy point, the value of ROAD(x0) is large; otherwise it is small.

Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
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Following [24] and [28] the authors define the “joint impulsivity” JI (x0, x) between x0 and x
as:

JI ðx0; xÞ ¼ exp �
ðROADðx0Þ þ ROADðxÞÞ2

2ð2sJÞ
2

 !

; ð13Þ

where the function JI (x0, x) assumes values in [0, 1] and the parameter σJ controls the shape of

the function JI (x0, x). If x0 or x is an impulse noisy point, then the value of ROAD(x0) or

ROAD(x) is large and JI (x0, x)� 0; otherwise, the value of ROAD(x0) and ROAD(x) are small

and JI (x0, x)� 1. The trilateral filter (cf. [24]) is given by

TriFðvÞðx0Þ ¼

P
x2Ux0 ;h

wðxÞY ðxÞ
P

x2Ux0 ;h
wðxÞ

;

where

wðxÞ ¼ wSðxÞwRðxÞ
JI ðx0 ;xÞwIðxÞ

1� JI ðx0 ;xÞ;

wSðxÞ ¼ e
�

jx � x0j
2

2s2
S ;

wRðxÞ ¼ e
�

ðY ðxÞ � Y ðx0ÞÞ
2

2s2
R ;

wIðxÞ ¼ e
�

ROADðxÞ2

2s2
I :

This filter has been shown to be very efficient in removing a mixed noise composed of a Gauss-

ian and random impulse noise.

2.3 Optimal Weights Mixed Filter

The ROAD statistic (cf. [24]) provides a effective measure to detection the pixel contaminated

by impulse. In this paper, we take into account the character of Gaussian noise and modify the

ROAD statistic to better adapt to the mixture of impulse and Gaussian noises. Instead of the

ROAD statistic Eq (12) we propose to use the statistic

ROADGIðx0Þ ¼
1

K

XK

i¼1

riðx0Þ � s

 !þ

; x0 2 I; ð14Þ

where σ is the standard deviation of the added Gaussian noise, ri(x0) is the i-th smallest term in

the set fjYðxÞ � Yðx0Þj : x 2 O
0

x0 ;d
g, and 2 � K < card O

0

x0 ;d
. An advantage of the ROADGI

statistic, compared to the ROAD statistic, is that it is relatively stable with respect to size d of

the detection window O
0

x0 ;d
, and takes into account the Gaussian noise level σ. Let

Jðx;HÞ ¼ exp �
ROADGIðxÞ2

H2

� �

; ð15Þ

be a weight to estimate whether the point is impulse one, where the parameter H controls the

shape of the function. In the case when the pixel x is an impulse point then ROADGI(x) is large

and J(x, H)� 0; otherwise ROADGI(x)� 0 and J(x, H)� 1.
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Now, we modify the Optimal Weights Filter [11] in order to treat the mixture of impulse

and Gaussian noises. Similar to Eq (5), we define the impulse detection distance by

dJ;k ðYx;Z;Yx0 ;Z
Þ ¼
kðYx;Z � Yx0 ;Z

ÞkJ;k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

y02Vx0 ;Z
kðy0Þ

q ;

where

kYx;Z � Yx0 ;Z
k

2

J;k

¼
X

y2Vx0 ;Z

kðTxyÞJðTxy;H1ÞJðy;H1ÞðY ðTxyÞ � Y ðyÞÞ2;

and κ are some weights defined on Vx0,η. The corresponding estimate of brightness variation

ρf,x0
(x) is given by

r̂J;k;x0
ðxÞ ¼ ðdJ;k ðYx;Z;Yx0;Z

Þ �
ffiffiffi
2
p

sÞ
þ
: ð16Þ

The best denoising results are obtained when the smoothing kernel κ is defined by

kðyÞ ¼
XZ

k¼maxð1;jÞ

1

ð2kþ 1Þ
2 ð17Þ

if ky − x0k1 = j for some j 2 {0, 1, � � �, η} and y 2 Ux0,η. It is possible to use as k the Gaussian

kernel, but the results are a bit less precise.

Now, we define a new filter, called Optimal Weights Mixed Filter (OWMF), by

f̂ hðx0Þ ¼

P
x2Ux0 ;h

Jðx;H2Þktrð
r̂J;k;x0

ðxÞ
âJ

ÞY ðxÞ

X

y2Ux0 ;h

Jðx;H2Þktrð
r̂J;k;x0

ðxÞ
âJ

Þ

; ð18Þ

where the bandwidth âJ > 0 can be calculated as in Remark 2.1 (with r̂x0
ðxÞ and â replaced by

r̂J;k;x0
ðxÞ and âJ respectively) and H2 is a parameter. Notice that H1 and H2 may take different

values. The flowchart and the pseudocode of algorithm of the OWMF are given by Fig 1 and

Algorithm 1.

Algorithm 1: Optimal Weights Mixed Filter
Input:Noisy imageY; The set of parameters{d, K, M, m, H1, H2}
Output:Denoisedimage f̂ h

1 forallx 2 I do

2 computeROADGIðxÞ ¼ 1

K

PK
i¼1

riðxÞ � s
� �þ

3 compute Jðx;H1Þ ¼ exp � ROADGIðxÞ2

H2
1

� �

4 compute Jðx;H2Þ ¼ exp � ROADGIðxÞ2

H2
2

� �

5 end
6 for each x0 2 I do
7 give an initialvalueof â : â ¼ 1 (it can be an arbitrarypositivenumber)
8 compute fr̂J;k;x0

ðxÞ : x 2 Ux0 ;h
g by Eq (16)

9 reorder fr̂J;k;x0
ðxÞ : x 2 Ux0 ;h

g as increasingsequence,say
r̂J;k;x0

ðx1Þ � r̂J;k;x0
ðx2Þ � � � � � r̂ J;k;x0

ðxMÞ

10 for k = 1 to M do

Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
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11 if
s2þ
Pk

i¼1

r̂2
r;k;x0

ðxiÞ

Pk

i¼1

r̂ r;k;x0
ðxiÞ

� r̂r;k;x0
ðxkÞ then computer â ¼

s2þ
Pk

i¼1

r̂2
r;k;x0

ðxiÞ

Pk

i¼1

r̂ r;k;x0
ðxiÞ

;

12 else quit loop;
13 end
14 forallx 2 Ux0,h do

15 ŵðxiÞ ¼
Jðx;H2Þktr

r̂x0
ðxi Þ
â

� �

P
xi2Ux0 ;h

Jðx;H2Þktr
r̂x0
ðxi Þ
â

� �

16 end
17 compute f̂ hðx0Þ : f̂ hðx0Þ ¼

P
xi2Ux0 ;h

ŵðxiÞY ðxiÞ

18 end
19 To avoidthe undesirablebordereffects,in our simulationswe mirrorthe
imageoutsidethe imagelimitssymmetricallywith respectto the border.At
the corners,the image is extendedsymmetricallywith respectto the corner
pixels.

To explain the new algorithm Eq (18), note that the function J(x, H2) acts as a filter of the

points contaminated by the impulse noise. In fact, if x is an impulse noisy point, then J(x, H2)

� 0. When the impulse noisy points are filtered, the remaining part of the image is treated as a

image distorted by solely the Gaussian noise. So, in the new filter, the basic idea is to apply the

OWF [11] by giving nearly 0 weights to impulse noisy points.

Fig 1. Flowchart of Optimal Weights Mixed Filter.

https://doi.org/10.1371/journal.pone.0179051.g001
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3 Simulation and comparisons

The performance of a filter f̂ is measured by the usual Peak Signal-to-Noise Ratio (PSNR) in

decibels (db) defined by

PSNR ¼ 10 log 10

2552

MSE
;

MSE ¼
1

card I

X

x2I

ðf ðxÞ � f̂ hðxÞÞ
2
;

where f is the original image.

In the simulations, to avoid the undesirable border effects in our simulations, we mirror the

image outside the image limits. In more detail, we extend the image outside the image limits

symmetrically with respect to the border. At the corners, the image is extended symmetrically

with respect to the corner pixels.

In our simulations the parameters are chosen as follows:

d ¼ 2;

K ¼ 12;

M ¼ 13� 13;

m ¼ 15� 15;

H1 ¼ 5þ
30

1þ 20p
þ ðs � 10Þ

þ
ð0:5 � pÞ;

H2 ¼ 27 � 20p:

In [24] it is suggested to take d = 1 and K = 4. In [24], for low and moderate levels of noise

(p< 25%), one iteration is sufficient and usually provides the best results; for high levels of

noise (p> 25%), applying two to five iterations provides better results. Only one iteration is

required in our simulations. If we choose d = 1 and K = 4, as recommended in [24], we found

that a few spots of unremoved impulses often remain. This happens because impulses some-

times “clump” together, and the 3 × 3 detection window is too small to identify all the impulse

noise points. Consequently, we select parameters d = 2 and K = 12 of detection windows for all

levels of impulse noise. Fig 2 shows the comparison results between the restored images, with

detection window 3 × 3 and with detection window 5 × 5, which have been added an impulse

noise with p = 20%, 30%, 40%, and 50% respectively. When p = 30%, 40% and 50%, we can see

clearly some impulse spots in the restored images with detection window 3 × 3, while the visual

quality of the restored images with detection window 5 × 5 is very good, without impulse

spots. In the case where p = 20%, impulse spots of the restored image with detection window

3 × 3 are not obvious, and the PSNR value is a little better than that with detection window

5 × 5, whereas Fig 3 shows that the first image has two clumpy impulse spots and the visual

quality is not good enough. Consequently, we prefer detection window 5 × 5 for all levels

impulse noise.

The parameters m and M have been fixed to m = 25 × 25 and M = 13 × 13. Figs 4(C) and

5(C) show that the noise is reduced in a natural manner and significant geometric features,

Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
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Fig 2. Restored images contaminated by pure impulse noise using our method (OWMF) with different

sizes of the detection window O
0

x0 ;d
. The fist column corresponds to images restored with size 3 × 3 of the

Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
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fine textures, and original contrasts are visually well recovered with no undesirable artifacts.

To better appreciate the accuracy of the restoration process, we zoom a part of the picture.

For comparison, we show the images denoised by PARIGI (see the left of Figs 4(B) and

5(B)) and their zoomed parts (see the right of Figs 4(B) and 5(B)). We can see clearly that the

images denoised by our method are better than those denoised by PARIGI, so our method

provides a significant improvement. The overall visual impression and the numerical results

are improved using our algorithm.

For comparison, we consider the following three cases: pure Gaussian noise, pure impulse

noise and the mixture of Gaussian and impulse noises.

In the case of pure Gaussian white noise, we have done simulation on a commonly-used set

of images (“Lena”, “Barbara”, “Boat” and “House”) available at http://decsai.ugr.es/javier/

denoise/test_images/ and the comparison with several filters is given in Table 1. The PSNR val-

ues show that our approach work as well as relatively sophisticated methods, like Hirakawa

and Parks [35], Kervrann and Boulanger [36], Hammond and Simoncelli [7] and Aharon et al.

[4], and is better than the filters proposed in Buades et al. [2], Katkovnik et al. [37], Foi et al.

[38], Roth and Black [39], Hu et al. [33] and Delon et al. [32]. Exept [33] and [32], these meth-

ods can only deal with pure Gaussian noise, while our method can cope not only with the

Gaussian noise, but also with the impulse noise and the mixture of Gaussian and pure impulse

noises. The proposed approach gives a quality of denoising which is competitive with one of

the state-of-the art methods, BM3D (see [5]).

detection window. The second one is restored with size 5 × 5. The lines correspond to impulse noise

proportions p = 20%, 30%, 40% and 50% respectively.

https://doi.org/10.1371/journal.pone.0179051.g002

Fig 3. Details (of size 100 × 100) of the restored images contaminated by pure impulse noise using our method (OWMF) with

different sizes of the detection window O
0

x0 ;d
. The first image is restored with the size 3 × 3 of detection window, the second one with the

size 5 × 5. The original image has been contaminated by an impulse noise with p = 20%.

https://doi.org/10.1371/journal.pone.0179051.g003
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Fig 4. Comparison between PARIGI and our method (OWMF) for image “Lena” contaminated by

Gaussian noise with σ = 20 and impulse noise with p = 20%. (A) the original image and its part; (B) the

image restored by PARIGI and its part; (C) denoised image by our method and its part.

https://doi.org/10.1371/journal.pone.0179051.g004
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Fig 5. Comparison between PARIGI and our method (OWMF) for the image “Bridge” contaminated by

Gaussian noise with σ = 30 and impulse noise with p = 30%. (A) the original image and its part; (B) the

image restored by PARIGI and its part; (C) denoised image by our method and its part.

https://doi.org/10.1371/journal.pone.0179051.g005
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For the pure impulse noise, our method is also competitive. We choose a commonly used

set of images “Baboon”, “Bridge”, “Lena” and “Pentagon”(where “Baboon”, “Bridge”, “Lena”

and “Pentagon” available at http://www.math.cuhk.edu.hk/rchan/paper/dcx/), which is

considered in Delon et al. [22]. Table 2 lists the restoration results using various known

Table 1. Comparison for removing Gaussian noise.

Images Lena Barbara Boat House

Sizes 512 × 512 512 × 512 512 × 512 256 × 256

σ Method PSNR PSNR PSNR PSNR

15

Our method

33.75db 31.81db 31.02db 33.82dbM = 13 × 13

m = 25 × 25

Buades et al. [2] 32.72db 31.67db 30.39db 33.82db

Katkovnik et al. [37] 32.18db 29.20db 30.46db 32.62db

Foi et al. [38] 32.72db 29.61db 30.93db 33.18db

Roth and Black [39] 33.29db 30.16db 31.27db 33.55db

Hirakawa and Parks [35] 33.97db 32.55db 31.59db 33.82db

Kervrann and Boulanger [36] 33.70db 31.80db 31.44db 34.08db

Jin et al. [11] 33.93db 32.31db 31.64db 34.09db

Hammond and Simoncelli [7] 34.04db 32.25db 31.72db 33.72db

Aharon et al. [4] 33.71db 32.41db 31.77db 34.25db

Dabov et al. [5] 34.27db 33.00db 32.14db 34.94db

20

Our method

32.42db 30.40db 29.62db 32.71dbM = 13 × 13

m = 27 × 27

Buades et al. [2] 31.51db 30.38db 29.32db 32.51db

Katkovnik et al. [37] 30.74db 27.38db 29.03db 31.24db

Foi et al. [38] 31.43db 27.90db 39.61db 31.84db

Roth and Black [39] 31.89db 28.28db 29.86db 32.29db

Hirakawa and Parks [35] 32.69db 31.06db 30.25db 32.58db

Kervrann and Boulanger [36] 32.64db 30.37db 30.12db 32.90db

Jin et al. [11] 32.68db 31.04db 30.30db 32.83db

Hammond and Simoncelli [7] 32.81db 30.76db 30.41db 32.52db

Aharon et al. [4] 32.39db 30.84db 30.39db 33.10db

Dabov et al. [5] 33.05db 31.78db 30.88db 33.77db

Hu et al. [33] 31.59db - -.- -db 29.45db - -.- -db

Delon et al. [32] 27.51db 27.15db 26.55db 27.63db

25

Our method

31.40db 29.20db 28.56db 31.61dbM = 13 × 13

m = 27 × 27

Buades et al. [2] 30.36db 29.19db 28.38db 31.16db

Katkovnik et al. [37] 29.66db 26.05db 27.93db 30.12db

Foi et al. [38] 30.43db 26.62db 28.60db 30.75db

Roth and Black [39] 30.57db 26.84db 28.57db 31.05db

Hirakawa and Parks [35] 31.69db 29.89db 29.21db 31.60db

Kervrann and Boulanger [36] 31.73db 29.24db 29.20db 32.22db

Jin et al. [11] 31.59db 29.92db 29.16db 31.95db

Hammond and Simoncelli [7] 31.83db 29.58db 29.40db 31.54db

Aharon et al. [4] 31.36db 29.58db 29.32db 32.07db

Dabov et al. [5] 32.08db 30.72db 29.91db 32.86db

https://doi.org/10.1371/journal.pone.0179051.t001
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algorithms. It is clear that our method provides a significant improvement over Sun and

Neuvo [40], Abreu et al. [17], Wang and Zhang [41], Chen et al. [42], Chen and Wu [18, 43],

Crnojevic et al. [44], Wenbin [21], etc. Our approach works as well as Dong et al. [22], Yu et al.

[23], Hu et al. [33] and Delon et al. [32]. It produces the best PSNR values in the cases of

“Baboon” (40%) and “Pentagon” (40%), while Yu et al. [23] has the best results in the case of

“Baboon” (20%) and “Bridge” (40%), and Dong et al. [22](ROLD-EPR) wins in the case of

“Lena” (20% and 40%). Finally, in Table 3 we compare Garnett et al. [24], Hu et al. [33],

Delon et al. [32] and our filter (OWMF) on the set of images “Lena”, “Bridge”, “Boat” and

“Barbara”; from Table 3, it is clear that our method performs better. in most cases, especially

when σ> 10.

For a mixture of Gaussian and impulse noises simulation results show that the new pro-

posed filter OWMF is competitive with PARIGI from [31, 32] and the filter in [33]. Table 3

shows that the results of denoising using our filter are generally better than those of PARIGI

and [33] in the cases of “Lena”, “Bridge” and “Boat” when σ> 10. For σ = 10 our filter gives

the results close to the best, which are sometimes the best. When considering the pure impulse

noise, our method improves PARIGI and [33] in most cases; for pure Gaussian noise, our

method is better than PARIGI and [33] with a larger margin.

4 Conclusion

A new image denoising filter to deal with the mixture of Gaussian and impulse noises, based

on weights optimization and the modified Rank-Ordered Absolute Differences statistic, is pro-

posed. The implementation of the filter is straightforward. Our work leads to the following

conclusions.

1. The improved Rank-Ordered Absolute Differences statistic, used in the new filter, detects

effectively the impulse noise in the case of mixture of Gaussian and impulse noises. This sta-

tistic is well adapted for use with the Weights Optimization Filter of [11].

Table 2. Comparison for removing impulse noise.

Images Baboon Bridge Lena Pentagon

p% 20% 40% 20% 40% 20% 40% 20% 40%

Method PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Our method

24.81db 22.12db 27.84db 24.91db 35.50db 32.19db 30.91db 28.34dbM = 13 × 13

m = 25 × 25

Sun and Neuvo [40] 23.67db 20.85db 26.26db 22.66db 32.93db 27.90db 29.34db 26.26db

Abreu et al. [17] 23.81db 21.49db 26.56db 23.80db 35.71db 29.85db 30.38db 27.27db

Wang and Zhang [41] 23.43db 21.07db 26.33db 22.75db 35.09db 28.92db 29.18db 26.19db

Chen et al. [42] 23.73db 21.38db 26.52db 22.89db 34.21db 28.30db 29.29db 26.29db

Chen and Wu [18] 24.02db 21.52db 27.27db 23.55db 35.44db 29.26db 30.34db 27.04db

Chen and Wu [43] 24.17db 21.58db 27.08db 23.23db 36.07db 28.79db 30.23db 26.84db

Crnojevic et al. [44] 23.78db 21.56db 26.90db 23.83db 36.50db 31.41db 30.11db 27.33db

Wenbin [21] 24.18db 21.41db 27.05db 23.88db 36.90db 30.25db 30.42db 26.93db

Garnett et al. [24] 24.18db 21.60db 27.60db 24.01db 36.70db 31.12db 30.33db 27.14db

Chan et al. [19] 23.97db 21.62db 27.31db 24.60db 36.57db 32.21db 30.03db 27.35db

Dong et al. [22] 24.49db 21.92db 27.86db 24.79db 37.45db 32.76db 30.73db 27.73db

Yu et al. [23] 24.86db 22.06db 28.06db 24.97db 36.18db 32.03db - -.- -db - -.- -db

Hu et al. [33] - -.- -db - -.- -db 28.10db 24.74db 35.90db 31.98db - -.- -db - -.- -db

Delon et al. [32] 24.46db 21.86db 26.53db 24.06db 36.62db 31.94db 31.18db 28.19db

https://doi.org/10.1371/journal.pone.0179051.t002
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Table 3. Comparison for removing mixed noise.

Gaussian Noise Image Method p = 0.2 p = 0.3 p = 0.4 p = 0.5

sigma = 10

Lena Garnett et al. [24] 31.48db 29.87db 28.57db 27.31db

Hu et al. [33] 32.93db 31.30db - -.- -db - -.- -db

Delon et al. [32] 33.16db 32.93db 32.19db 30.37db

Our method 33.18db 32.05db 30.90db 29.52db

Bridge Garnett et al. [24] 25.82db 24.92db 23.79db 22.28db

Hu et al. [33] 26.35db 35.00db - -.- -db - -.- -db

Delon et al. [32] 25.81db 24.59db 23.67db 22.45db

Our method 26.42db 25.19db 24.08db 23.08db

Boat Garnett et al. [24] 28.61db 27.54db 26.22db 24.74db

Hu et al. [33] 29.91db 28.38db - -.- -db - -.- -db

Delon et al. [32] 29.55db 28.43db 27.02db 25.46db

Our method 29.57db 28.22db 27.05db 25.92db

Barbara Garnett et al. [24] 24.82db 24.00db 23.08db 22.33db

Hu et al. [33] - -.- -db - -.- -db - -.- -db - -.- -db

Delon et al. [32] 30.94db 30.02db 28.67db 26.49db

Our method 28.47db 26.46db 24.83db 23.62db

sigma = 20

Lena Garnett et al. [24] 28.85db 28.02db 27.10db 25.68db

Hu et al. [33] 30.47db 29.38db - -.- -db - -.- -db

Delon et al. [32] 29.92db 29.31db 29.15db 28.19db

Our method 30.87db 30.09db 29.19db 28.14db

Bridge Garnett et al. [24] 23.56db 23.01db 22.47db 21.72db

Hu et al. [33] 24.53db 23.70db - -.- -db - -.- -db

Delon et al. [32] 23.38db 23.14db 22.75db 21.82db

Our method 24.70db 23.97db 23.21db 22.45db

Boat Garnett et al. [24] 26.18db 25.46db 24.75db 23.79db

Hu et al. [33] 27.74db 26.66db - -.- -db - -.- -db

Delon et al. [32] 26.61db 26.34db 25.64db 24.21db

Our method 27.79db 26.93db 25.97db 25.08db

Barbara Garnett et al. [24] 23.35db 22.95db 22.53db 21.84db

Hu et al. [33] - -.- -db - -.- -db - -.- -db - -.- -db

Delon et al. [32] 27.54db 25.70db 24.99db 23.08db

Our method 27.50db 25.95db 24.43db 23.33db

sigma = 30

Lena Garnett et al. [24] 27.26db 26.57db 25.58db 23.99db

Hu et al. [33] 28.67db 27.65db - -.- -db - -.- -db

Delon et al. [32] 27.27db 26.72db 26.67db 26.32db

Our method 29.12db 28.49db 27.76db 26.75db

Bridge Garnett et al. [24] 22.88db 22.42db 21.87db 20.98db

Hu et al. [33] 23.35db 22.72db - -.- -db - -.- -db

Delon et al. [32] 22.31db 21.99db 21.70db 21.22db

Our method 23.56db 23.02db 22.49db 21.86db

Boat Garnett et al. [24] 25.11db 24.55db 23.80db 22.62db

Hu et al. [33] 26.23db 25.48db - -.- -db - -.- -db

Delon et al. [32] 24.45db 23.32db 22.85db 22.27db

Our method 26.41db 25.79db 25.08db 24.26db

Barbara Garnett et al. [24] 22.82db 22.46db 21.94db 21.10db

Hu et al. [33] - -.- -db - -.- -db - -.- -db - -.- -db

Delon et al. [32] 25.03db 24.96db 24.59db 21.40db

Our method 25.98db 24.81db 23.72db 22.81db

https://doi.org/10.1371/journal.pone.0179051.t003
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2. It is shown by simulations that the proposed filter is very efficient for removing both a mix-

ture of impulse and Gaussian noises, and the pure impulse or pure Gaussian noise.

3. Our numerical results demonstrate that the new filter is competitive with the known filters.
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